Tuesday, 14 January 2014

Muhammad Amir going to join Team soon

There is good news for fan of cricket that Muhammad Aamir fast bowler of Pakistan is coming back to join team soon.

 

 



The International cricket council (ICU) has agreed to review the ban of Pakistani fast bowler Mohammed Amir.

The youngster was an up and coming talent in the world of cricket and sport until he was implicated in a match fixing scandal uncovered by the now closed News of the World. Amir’s ban currently is set to end in 2015; however it is looking more likely this may be reduced by a year. The Pakistani nation will be hoping for an early return to add pace and precision to their line up. Amir was tipped to become the next Waqar Younis, however with such a long period out of the sport it is now difficult to determine just how well he will be able to settle back into the sport.

The ICC are currently reviewing their anti corruption laws where the matter of Mohammed Amir’s five year ban is also being discussed. The discussion has been going on since July and is expected to produce a finalized new anti corruption law by January 2014. The possibility of Amir returning to international cricket will then be reviewed after the new laws have been finalized and adopted. The fast bowler is already getting ready to return to training with the Pakistanis and ‘warm up’ domestic games.

Once a great prospect in cricket, Pakistani cricket fans will be eagerly awaiting confirmation of his return to the sport.

Mohammed Amir commented on his ban; “I have learned my lessons and it has been frustrating not being able to play cricket which I love so much.”

Sunday, 12 January 2014

Observation of unexpectedly deformed neutron-rich magnesium nuclei prompts rethink of nuclear shell structure

               Although much is known about atoms and their nuclei, scientists continue to make surprising discoveries as they probe the properties of some of the more exotic isotopes. Pieter Doornenbal from the RIKEN Nishina Center for Accelerator-Based Science (RNC) and co‐workers have made another such discovery with the observation that magnesium nuclei with a large number of neutrons appear to lose the nuclear shell structure that has become fundamental to our understanding of the nucleus.
         
           The protons and neutrons that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.
         
          Nuclear physicists now widely accept that nuclei with 2, 8, 20, 28, 50, 82 or 126 neutrons or protons are particularly stable due to the complete filling of these shells. Nuclei with such 'magic numbers' of protons or neutrons are spherical, whereas nuclei with numbers of nucleons that diverge from these magic values are increasingly deformed.

          Doornenbal and his colleagues investigated the shape of magnesium nuclei with 22, 24 or 26 neutrons—a significant imbalance of neutrons against magnesium's 12 protons. "Studying such nuclei is now possible thanks to the RNC's Radioactive Isotope Beam Factory, which provides the world's highest-intensity radioactive isotope beams," says Doornenbal. The results indicate that the magic numbers for neutron-rich nuclei—and hence the filling of nuclear shells—might differ from those of the naturally occurring stable nuclei, in which the numbers of protons and neutrons are roughly equal.

         The beams of magnesium nuclei were produced by first bombarding a high-energy beam of calcium nuclei against a thin beryllium target. The collision created a multitude of different nuclei that were then screened using magnetic fields to select precursor nuclei—aluminum-37, aluminum-39 and silicon-40. The desired magnesium nuclei were then obtained by bombarding the precursor nuclei against a carbon target to knock out additional nucleons.

        The researchers probed the shape of the magnesium nuclei by measuring the high-energy electromagnetic waves that they emit. By comparing these results to theoretical calculations and previous experimental work, the team inferred a large 'island' of deformation in the isotope chart for neutron-rich nuclei with 20 to 28 neutrons. "This behavior is also expected to occur for larger magic numbers," says Doornenbal. "However, we do not yet have the experimental tools to study it in these regions."


Reference:
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutro
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.

Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.
Nuclear physicists now widely accept that nuclei with 2, 8, 20, 28, 50, 82 or 126 neutrons or protons are particularly stable due to the complete filling of these shells. Nuclei with such '' of protons or neutrons are spherical, whereas nuclei with numbers of nucleons that diverge from these magic values are increasingly deformed.


Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.
Nuclear physicists now widely accept that nuclei with 2, 8, 20, 28, 50, 82 or 126 neutrons or protons are particularly stable due to the complete filling of these shells. Nuclei with such '' of protons or neutrons are spherical, whereas nuclei with numbers of nucleons that diverge from these magic values are increasingly deformed.
Doornenbal and his colleagues investigated the shape of nuclei with 22, 24 or 26 neutrons—a significant imbalance of neutrons against magnesium's 12 protons. "Studying such nuclei is now possible thanks to the RNC's Radioactive Isotope Beam Factory, which provides the world's highest-intensity radioactive isotope beams," says Doornenbal. The results indicate that the magic numbers for neutron-rich nuclei—and hence the filling of nuclear shells—might differ from those of the naturally occurring , in which the numbers of and neutrons are roughly equal.
The beams of magnesium nuclei were produced by first bombarding a high-energy beam of calcium nuclei against a thin beryllium target. The collision created a multitude of different nuclei that were then screened using magnetic fields to select precursor nuclei—aluminum-37, aluminum-39 and silicon-40. The desired magnesium nuclei were then obtained by bombarding the precursor nuclei against a carbon target to knock out additional nucleons.
The researchers probed the shape of the magnesium nuclei by measuring the high-energy electromagnetic waves that they emit. By comparing these results to theoretical calculations and previous experimental work, the team inferred a large 'island' of deformation in the isotope chart for neutron-rich nuclei with 20 to 28 neutrons. "This behavior is also expected to occur for larger magic numbers," says Doornenbal. "However, we do not yet have the experimental tools to study it in these regions."


Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.
Nuclear physicists now widely accept that nuclei with 2, 8, 20, 28, 50, 82 or 126 neutrons or protons are particularly stable due to the complete filling of these shells. Nuclei with such '' of protons or neutrons are spherical, whereas nuclei with numbers of nucleons that diverge from these magic values are increasingly deformed.
Doornenbal and his colleagues investigated the shape of nuclei with 22, 24 or 26 neutrons—a significant imbalance of neutrons against magnesium's 12 protons. "Studying such nuclei is now possible thanks to the RNC's Radioactive Isotope Beam Factory, which provides the world's highest-intensity radioactive isotope beams," says Doornenbal. The results indicate that the magic numbers for neutron-rich nuclei—and hence the filling of nuclear shells—might differ from those of the naturally occurring , in which the numbers of and neutrons are roughly equal.
The beams of magnesium nuclei were produced by first bombarding a high-energy beam of calcium nuclei against a thin beryllium target. The collision created a multitude of different nuclei that were then screened using magnetic fields to select precursor nuclei—aluminum-37, aluminum-39 and silicon-40. The desired magnesium nuclei were then obtained by bombarding the precursor nuclei against a carbon target to knock out additional nucleons.
The researchers probed the shape of the magnesium nuclei by measuring the high-energy electromagnetic waves that they emit. By comparing these results to theoretical calculations and previous experimental work, the team inferred a large 'island' of deformation in the isotope chart for neutron-rich nuclei with 20 to 28 neutrons. "This behavior is also expected to occur for larger magic numbers," says Doornenbal. "However, we do not yet have the experimental tools to study it in these regions."


Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp
The protons and that make up an atomic nucleus are kept together by a balance of nuclear forces. When the number of neutrons is similar to the number of protons, the nucleus is generally stable and the nucleons arrange themselves in shells as a consequence of the laws of quantum mechanics.
Nuclear physicists now widely accept that nuclei with 2, 8, 20, 28, 50, 82 or 126 neutrons or protons are particularly stable due to the complete filling of these shells. Nuclei with such '' of protons or neutrons are spherical, whereas nuclei with numbers of nucleons that diverge from these magic values are increasingly deformed.
Doornenbal and his colleagues investigated the shape of nuclei with 22, 24 or 26 neutrons—a significant imbalance of neutrons against magnesium's 12 protons. "Studying such nuclei is now possible thanks to the RNC's Radioactive Isotope Beam Factory, which provides the world's highest-intensity radioactive isotope beams," says Doornenbal. The results indicate that the magic numbers for neutron-rich nuclei—and hence the filling of nuclear shells—might differ from those of the naturally occurring , in which the numbers of and neutrons are roughly equal.
The beams of magnesium nuclei were produced by first bombarding a high-energy beam of calcium nuclei against a thin beryllium target. The collision created a multitude of different nuclei that were then screened using magnetic fields to select precursor nuclei—aluminum-37, aluminum-39 and silicon-40. The desired magnesium nuclei were then obtained by bombarding the precursor nuclei against a carbon target to knock out additional nucleons.
The researchers probed the shape of the magnesium nuclei by measuring the high-energy electromagnetic waves that they emit. By comparing these results to theoretical calculations and previous experimental work, the team inferred a large 'island' of deformation in the isotope chart for neutron-rich nuclei with 20 to 28 neutrons. "This behavior is also expected to occur for larger magic numbers," says Doornenbal. "However, we do not yet have the experimental tools to study it in these regions."


Read more at: http://phys.org/news/2014-01-unexpectedly-deformed-neutron-rich-magnesium-nuclei.html#jCp